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An experimental and numerical study investigating the flow development and fully 
developed flows of an incompressible Newtonian fluid in a curved duct of square cross 
section with a curvature ratio of 15.1 is presented. Numerical simulations of flow 
development from a specified inlet profile were performed using a parabdized form 
of the steady three-dimensional Navier-Stokes equations. No symmetry conditions 
were imposed. In general there was good agreement between the numerical 
predictions of the developing axial velocity profiles and LDV measurements. In 
addition, for computational expediency, the two-dimensional solution structure was 
calculated by imposing fully developed conditions together with symmetry 
conditions along the horizontal duct centreline. 

Laser-Doppler measurements of axial velocity and flow visualization at  Dean 
number Dn = 125, 137 and 150, revealed a steady and symmetric two-vortex flow at 
Dn = 125, and a steady and symmetric four-vortex flow at both Dn = 137 and 150 
(Dn = Re/(R/a)i ,  where Re is the Reynolds number, R is the radius of curvature of 
the duct and a is the duct dimension). Axial velocity measurements showed that the 
four-vortex flow at Dn = 150 developed to the solution predicted by the two- 
dimensional numerical simulation. However, the four-vortex flow at Dn = 137 was 
still developing when the flow had reached the end of the 240" axial length of the 
duct. A numerical investigation for Dean numbers in the range of 50 to 175 revealed 
that at the limit point of the two-cell to four-cell transition the development length 
appeared to be infinite, and thereafter decreased for increasing Dean numbers. The 
behaviour of decreasing development length of the four-vortex flow with increasing 
Dean number has not been reported previously. 

Using a symmetrically positioned pin at 6 = 5' to induce the four-cell flows, the 
two-dimensional solution structure for Dn < 150 was experimentally observed for 
the first time. Experiments were consistent with the prediction by Winters (1987) 
that four-vortex flows are stable to symmetric perturbations, but unstable to 
asymmetric perturbations. Experimental and numerical investigations suggested 
that, when perturbed asymmetrically, the four-vortex flow might evolve to flows 
with sustained spatial oscillations farther downstream. 

1. Introduction 
The earliest observations of flow in curved pipes were by Williams, Hubbell & 

Finkell (1902) and Eustice (1910, 1911, 1925). Dean (1927, 1928a) was the first to 
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show mathematically the existence of one pair of counter-rotating vortices for the 
fully developed viscous flow of a Newtonian fluid in a curved pipe. Dean non- 
dimensionalized the equations of motion and found them to be characterized by a 
single non-dimensional parameter now known as the Dean number, Dn. Since Dean’s 
original analysis, much work, both theoretical and experimental, has been done on 
flows in curved pipes. Apart from the hydrodynamic aspects, there has also been 
considerable work on forced-convection heat transfer in coiled pipes. The focus of 
this study was flow in a curved duct of square cross-section, so much of the past work 
in curved pipes has not been covered. The interested reader is directed to 
comprehensive review articles by Berger, Talbot & Yao (1983), Nandakumar & 
Masliyah (1986) and I t G  (1987). 

The first theoretical analysis showing the existence of secondary flows in a curved 
duct of rectangular cross-section was performed by I t G  (1951) and Cuming (1952). 
Cheng & Akiyama (1970) used a finite-difference formulation to calculate the 
secondary flows in curved rectangular ducts. They calculated the familiar two-vortex 
pattern and only mentioned the existence of a new four-vortex pattern beyond a 
critical Dean number. The four-vortex pattern was later presented by Cheng, Lin & 
Ou (1975, 1976). A numerical investigation by Joseph, Smith & Alder (1975) for a 
curved duct of square cross-section also showed the switch from the twin counter- 
rotating vortices to the four-vortex pattern above a critical Dean number. They 
confirmed the presence of the four-vortex flow by flow visualization; however, no 
photographs were published. Photographs of the additional vortices, for square as 
well as other aspect-ratio cross-sections, have been presented by Cheng et al. (1979) 
and Sugiyama, Hayashi & Yamazaki (1983). 

For flow in a curved duct, dual solutions were first reported in the numerical study 
by Cheng & Akiyama (1970) in their study of loosely coiled ducts of rectangular 
cross-section. Owing to uncertainties associated with the double solutions they did 
not present any results, but the double two- and four-vortex solutions were described 
in Akiyama (1969). The existence of dual solutions was established by Masliyah 
(1980), both numerically and experimentally, for the flow in a curved duct of 
semicircular cross-section with a flat outer wall. Dual solutions for fully developed 
flow in a curved duct of square cross-section have been found in the numerical studies 
of Winters & Brindley (1984), Shanthini & Nandakumar (1986), Winters (1987) and 
Daskopoulos & Lenhoff (1989). The study of Winters (1987) is the most detailed, 
showing the solution structure as a complex bifurcation diagram involving regions 
of multiple solutions consisting of symmetric and asymmetric solutions. A linear 
stability analysis by Winters revealed that the two-vortex flows were stable to an 
arbitrary perturbation, and the four-vortex flows were stable to a symmetric 
perturbation but unstable to an asymmetric perturbation. Despite their predicted 
instability, four-vortex flows have been visualized by Cheng et al. (1979) and 
Sugiyama et al. (1983) at certain Dean numbers in their experiments, but not as dual 
solutions (i.e. coexisting at the same Dean number as a two-vortex flow). Several 
features of Winters’ (1987) solution structure are similar to the solution structures 
presented by Wienitschke, Nandakumar & Sankar (1990), Nandakumar, Raszillier & 
Durst (1991), and Nandakumar & Wienitschke (1991) for convective heat transfer in 
porous media, flow through rotating rectangular ducts, and mixed-convection heat 
transfer in a horizontal ducts respectively. 

For fully developed flow in a curved pipe of circular cross-section, the numerical 
studies of Nandakumar & Masliyah (1982), Dennis & Ng (1982), and Yang & Keller 
( 1986) revealed the existence of multiple solutions. Flow visualization by Masliyah 



An experimental and numerical study of the Dean problem 34 1 

(1980) and Cheng & Yeun (1987) confirmed their existence in a curved pipe of 
semicircular and circular cross-section respectively. A stability analysis of the dual 
solutions, performed by Yanase, Goto & Yamamoto (1988), showed the two-vortex 
flow to be stable to an arbitrary perturbation, while the four-vortex flow was stable 
to a symmetric perturbation but unstable to an asymmetric perturbation. 

Developing laminar flow in curved ducts of rectangular cross-section has been 
studied by Ghia & Sohkey (1977), Humphrey, Taylor and Whitelaw (1977), Yee, 
Chilukuri & Humphrey (1980), Taylor, Whitelaw & Yianneskis (1982), Hille, 
Vehrenkamp & Schulz-Dubois (1985), Sankar, Nandakumar & Masliyah (1988), Soh 
(1988), Sugiyama et al. (1989), Kajishima, Miyaki & Inaba (1989). The most detailed 
measurements of the flow development in a curved duct of square cross-section were 
performed in the LDV study by Hille et al. (1985). Their measurements revealed the 
development of an asymmetric four-vortex structure at Dean numbers between 150 
and 300, but the flow had not reached a fully developed state within the 180" axial 
length of their duct. In  the numerical study of the flow development in a curved duct 
of square cross-section, Sankar et al. (1988) found that is was possible for a four- 
vortex flow to develop sustained spatial oscillations in the streamwise direction. The 
numerical study by Soh (1988) showed that, depending on the inlet condition for a 
given flow rate, the flow might develop into the two-cell and four-cell states predicted 
by the two-dimensional bifurcation study of Winters (1987). 

Most of the studies of flow development in a curved pipe have used a boundary- 
layer analysis to examine the details of the developing flow (see Yao & Berger 1988). 
Theoretical investigations in a curved pipe have only shown the development of a 
two-vortex flow, while the numerical studies in a rectangular geometry have shown 
the development of both a two- and four-vortex flow. For both a circular and 
rectangular cross-section, no experimental measurements exist for the development 
of a symmetric four-vortex flow to its fully developed state. 

In  this study, the existence of dual solutions in a curved duct of square cross- 
section was experimentally investigated. Detailed axial velocity measurements were 
performed to investigate the development of symmetric four-vortex flows. All 
experiments and numerical calculations were done for a curvature ratio of R, = 15.1. 
Given that four-vortex flows have been calculated to be unstable to asymmetric 
perturbations, their stability characteristics were investigated in a combined 
numerical and experimental study. 

2. Governing equations 
A square-cross-section curved duct is best described by a cylindrical coordinate 

system as shown in figure 1. The origin of the coordinate system is at the centre 
of curvature of the duct, and the duct boundaries are located at z' = i-$ and 
r' = R&$. By introducing the coordinate x', where x' = r'-R, the side boundaries 
of the duct can more conveniently be located at x' = ,$. 

In this study we wished to investigate the flow development and the flow structure 
once the flow had reached a fully developed state. Therefore, a numerical formulation 
of both the three-dimensional and two-dimensional Naviel-Stokes equations were 
used in this study. The three-dimensional computer codes used in this study had been 
developed by Sankar et al. (1988), and the two-dimensional code had been developed 
by Shanthini (1985). 
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2.1. Developing flow equations 
The developing flow equations used in this study were simplified by neglecting the 
axial diffusion of momentum, changing the equations from an elliptic to a parabolic 
form. The non-dimensional continuity and parabolized momentum equations for a 
steady flow of an incompressible Newtonian fluid are 

i a  lav, av 
r ar r ae aZ - - (rvr)+--+L = 0, 

Global continuity requires that 

JZ = 0.5 J? = R,+0.5 

v,drdx = 1.0, 
L = -0.5 r - R,-0.5 

The variables have been non-dimensionalized as follows : 

r‘ X‘ R = -  R v = = ,  v’ p = =  P‘ Re=-, Pa% , z = -  x = - 
a a a’ 4 pvf P a’ 

r = - = R,+x, 

where the prime denotes dimensional quantities. The above equations were solved 
using the computer code of Sankar et al. (1988). Their formulation did not impose any 
reflective symmetry about the z ’ l a  = 0 axis; therefore, it allowed the evolution of 
asymmetric flows in the &direction. The equations were discretized by integrating 
them over a control volume and solved according to the method given by Patankar 
(1980). For all developing flow calculations, a grid of 31 x 31 was used in the cross- 
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plane and a marching step of 0.5’ was used in the axial direction. Typical computing 
times, in order to march 400’ of axial length (i.e. 800 marching steps), were 1.2 hours 
of cpu usage on a FPS-164 Scientific Computer (Floating Point Systems Inc.). 

The terms that were dropped from the full three-dimensional steady flow 
equations in Sankar et al.’s formulation were 

The terms are multiplied by 1/Re and l/r2 ; therefore, in the absence of sharp velocity 
gradients, they will become less important as Re and the radius of curvature increase. 
It is not shown in Sankar et al., but on a careful examination of the details of their 
numerical formulation (Sankar et al. private communication), the gradient of v, in 
the &direction was also neglected. 

2.2. Fully developed flow equations 
For the two-dimensional formulation of the Navier-Stokes equations, all the terms 
involving gradients in the axial direction, except for the axial pressure gradient, were 
dropped. As a result, the continuity and momentum equations for fully developed 
steady flow of an incompressible Newtonian fluid are 

(2.10) 

The equations have been non-dimensionalized as follows 

a2PP’ apv: v, = aPv; -, v, = - 
P2 ’ wr =-’ P P P 

P = -  

with r ,  x ,  z and R,  scaled as for the developing flow. The different scaling for p and 
w as compared to the developing flow equations is to allow the two-dimensional 
equations to be solved without involving iteration of the axial pressure gradient. 

Equations (2.7)-(2.10) can be transformed to a vorticity-stream-function 
formulation by introducing a dimensionless stream function and vorticity function. 
The dimensionless stream function which automatically satisfies continuity is 
determined by 

(2.11) 

the dimensionless vorticity function is defined as 

(2.12) 
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Substituting (2.11) into (2.12) results in the vorticity-stream-function equation 
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(2.13) 

Using (2.12), the radial and vertical momentum equations can be combined to 
eliminate the pressure terms and form the vorticity-transport equation 

(2.14) 
a~ asz V,Q - 2 ~  av azQ a 2 5 2  iaSz 

2, -+v  ---= LA+-+-+ 
ar r r az ar2 az2 r ar r2’ 

The axial momentum equation remains 

(2.15) 

The solution to the two-dimensional flow field can now be found by solving (2.13), 
(2.14) and (2.15). 

For a square duct, the boundary conditions with imposed symmetry about the 
horizontal centreline are : 

no slip at the walls $ = V, = vg = V, = 0, 

at the top wall 

Q =  1 a 2 $  
at the sidewalls 

r ar2’ 

along the horizontal centre line 

The equations were solved using the computer programs written by Shanthini 
(1985). In her formulation (2.13), (2.14) and (2.15) were discretized using a three- 
point central-difference approximation. The imposed symmetry about z’/a = 0 did 
not allow any asymmetric solutions to be calculated. A grid of 41 x 21 was used in all 
of the two-dimensional calculations performed in this study. Typical computing 
times for one two-dimensional simulation were four to five minutes of cpu usage on 
the FPS-164 Scientific Computer. 

2.3. DeJinition of Dean number 
Even though the governing equations are not characterized by a single non- 
dimensional parameter, it is common practice to present results characterized by a 
non-dimensional Dean number. The Dean number, Dn, used throughout this study, 
was defined as 

Dn = Re/Rk, (2.16) 

where Re = pa$/p and p is the fluid density and p is the absolute viscosity. The 
Dean number is similar to Dean’s (1928~)  non-dimensional grouping which included 
a curvature ratio and a slightly different form of Reynolds number. The Dean 
number is a ratio of the inertial and centrifugal forces to the viscous forces. 
Secondary flows are a result of the interaction of the centrifugal forces with the 
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viscous forces, so the Dean number is a measure of the strength of the secondary flow. 
Many definitions of Dean number have been used in the analysis of curved ducts and 
a review is given by Berger et al. (1983). 

3. Experimental system 
A schematic of the curved duct apparatus is shown in figure 2. The curved duct 

section had a 1.27 cm square cross-section with an axial length of 270" and a 
curvature ratio R, = 15.1. The square duct was constructed by first cutting a square 
channel into the edge of 19.8 cm diameter, 3.3 cm thick Plexiglas disk. A strip of 
1.5 mm thick Plexiglas was then glued around the edge of the disk to form the outer 
wall. A stilling chamber, with a smooth contraction connected to a 1 m straight duct 
inlet section, was used to provide a well-controlled inlet profile to the curved section. 
A 10 cm long by 1.9 cm diameter straight pipe was fastened directly to the exit of the 
curved section. A tee connection fastened to the end of the straight pipe was fitted 
with a flexible tubing coupling and an air bleed valve. At  5" from the curved section 
inlet, a hole was drilled along a radial line through the outer wall at  z' = 0 to allow 
a 0.4 mm diameter pin to be inserted across the duct, which would allow the 
introduction of symmetric and asymmetric perturbations into the flow. 

The curved section, inlet section and stilling chamber were all made of Plexiglas 
to facilitate LDV measurements and flow visualization. The assembly was mounted 
on a platform that allowed rotation about the centre of the curved section and the 
ability to traverse vertically and horizontally. Owing to physical limits in the 
amount that the assembly could be rotated, only about 240" of axial length was 
accessible for measurement purposes. Traversing of the apparatus was necessary 
because the LDV optics were held stationary; however, this resulted in an 
uncertainty of k 2-3 YO in positioning the crossing point in the duct. 

In order to provide a steady flow rate, a constant-head system consisting of 
stainless steel overflow tanks positioned above and below the apparatus was used. 
The distance between water levels in the two overflow tanks was approximately 
3.5 m, with the apparatus being about 0.5 m higher than the lower tank. The bottom 
of each overflow tank was lined with a 7.5 cm thick piece of foam in order to damp 
fluctuations caused by fluid entering the tanks. A reservoir with a centrifugal pump 
supplied the upper overflow tank, while the lower overflow tank would return to the 
reservoir or drain depending on if the system was run as a closed or opened loop. Two 
bleed valves, one located on the stilling chamber and the other at the exit of the 
curved section, were installed to allow air to be purged from the system. A set point 
temperature controller was used to keep the working fluid to withinfO.1 "C when 
measuring velocities in the closed system, or injecting dye in the open system 
configuration. 

A rotameter was used to aid in the setting of a desired flow rate but the mass flow 
rate was determined by weighing the amount of water collected in a timed interval. 
Timing was done with a hand-held digital stop watch with a resolution of 0.01 s, and 
the sample was weighed on an electronic balance accurate to 0.1 g. Uncertainty in an 
experimentally determined Dean number was k 0.3 %. 

The inlet section of the curved duct apparatus consisted of the stilling chamber 
and the 1 m long straight section. Careful attention was paid to the design of these 
two components to ensure that a well-behaved flow was present at the inlet of the 
curved section. One major aspect of this study was to investigate the effect of 
perturbations on the curved duct flow, so a stable and clean inlet condition was 
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FIGURE 2. Schematic of curved duct apparatus. 

absolutely necessary. A fully developed straight duct flow was chosen to be the inlet 
profile to the curved section. A 1 m straight section was used, based on the 
measurements of Goldstein & Kreid (1967). Using their experimentally determined 
relation L/d,  = 0.09Re, where L is the development length and d, is the hydraulic 
diameter, a 1 m length of duct would provide a fully developed inlet profile up to a 
Dean number of Dn = 225. 

I n  order to ensure that the profile would develop properly in the straight duct, a 
stilling chamber with a flow straightener, screens and contraction was used to feed 
the straight section. Details of the stilling chamber design can be found in Bara 
(1991). The four curved surfaces of the contraction were quarter-ellipses with minor 
and major axes of 2.5 ern and 5.0 em respectively. This resulted in a contraction with 
a contraction ratio, based on area, of 25 to 1.  The quarter-ellipse, based on the 
experimental system of Beavers, Sparrow & Magnuson (1970), was chosen to provide 
a uniform entry profile to the straight section. 

Axial velocities were measured with a single-component Argon-ion laser-Doppler 
velocimeter (LDV) operating in backscatter mode with a frequency tracker 
performing the signal processing. The system was composed of Dantec 55X modular 
optics with a 80mm focal length front lens, a Bragg cell and a Dantec 55N10 
Frequency Shifter. A Coherent Innova 90-3 Argon-ion laser capable of 3 W output 
on all lines was used as the lasing source. All velocity measurements were made using 
the blue (488.0 nm) line with typical laser powers of 200 mW. Measurements were 
performed by passing the laser beams through the 1.5 mm thick outer wall of the 
curved duct. The flow was seeded with silicon carbide particles of mean diameter 
1.5 x m. 

The probe volume, formed by the crossing point of the laser beams, is an ellipsoid 
with the axis in the direction of the beams much elongated. For the optical 
arrangement used in this study the probe volume had a diameter of 0.017 mm and 
a length of 0.12 mm. With a duct dimension of 1.27 ern this gave about 100 resolvable 
points across the duct. Uncertainty in a velocity measurement was about f 0.3 %, 
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FIGURE 3. Schematic of flow visualization system. 
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predictions (-) (measurement location : 5 hydraulic diameters upstream of inlet). 

while uncertainty in a non-dimensional velocity, vg, was & 0.45%. The largest source 
of error in the velocity measurements was not the uncertainty in the measurement 
itself, but the & 2-3 % uncertainty in positioning the crossing point in the duct. 

3.1. Flow visualization 

Flow visualization was accomplished by illuminating a cross-plane of the square duct 
with a thin sheet of blue laser light and injecting a laser fluorescent dye into the flow. 
A schematic of the flow visualization system is shown in figure 3. Dye was injected 
through a 0.4 mm diameter hole drilled through the top wall of the straight section 
duct at 9.3 cm from the end which was connected to the stilling chamber. As the dye 
passed through the plane illuminated by the laser light its fluorescence was bright 
enough to allow photographs to be taken. The image was viewed through a moveable 
Plexiglas block with flat outer edges. A thin film of water between the viewing block 
and outer wall of the duct was necessary to allowing viewing of the image. 
Rhodamine 6G (also known as Rhodamine 590) at a concentration of 1 x M was 
used as the dye source. Rhodamine B and Fluorescein at similar molar concentrations 
were also tried but did not give as bright an illumination as the Rhodamine 6G. 

Flow patterns were photographed with a 35 mm Nikon SLR camera fitted with a 
105 mm Nikon lens and a Nikon TC-200 2 x teleconverter. A No. 12 Kodak Wratten 

12 FLM 244 
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FIGURE 5. Measured axial velocity profiles ( ) compared to three-dimensional numerical 
simulations (-) at (a) Dn = 125, ( b )  137 and ( c )  150. Horizontal profiles in (a+) are at 
%'/a' = 0. (d) Vertical profiles at x'/a = 0 at Dn = 150. 
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Gelatin filter was attached to the lens assembly to attenuate the blue light of the 
illuminating sheet but still allow the light from the fluorescing dye to pass through. 
Good separation of the two colours was achieved since the peak fluorescence of the 
dye was around 580-600 nm (Yarborough 1974), while the illuminating sheet was at  
488 nm. Typical exposure times were from & to & s with a lens aperture of f4 and 
IS0 (ASA) setting of 800. P800/1600 Kodak Ektachrome professional slide film was 
used because of its fast speed and fine grain size. When taking photographs, stray 
reflections were minimized by covering the curved section with black felt. 

Digital enhancement of the photographed flow patterns was required to trim off 
unwanted reflections and linearly stretch the photographs in the radial direction. 
The different refractive indexes between water and air, and the refraction of light at  
the curved surface interface between the viewing block and duct, caused the viewed 
image to be compressed in the radial direction. Reflections of the illuminated flow 
patterns appeared around the duct boundary, but had no adverse effect on viewing 
the desired image. Photographs were digitized with the assistance and equipment of 
Campbell (1991). The technique consisted of illuminating the image of the flow 
patterns contained on a slide, and then capturing the image digitally with a Hitachi 
VKC360 video camera connected to a Data Translation 2871 digital frame grabbing 
board. The resulting digital images of the flow patterns had a resolution of 512 pixels 
in the vertical direction and 480 pixels in the radial direction. 

4. Flow development towards fully developed symmetric flows 
4.1. Inlet flow 

The inlet condition to the curved section that was used in this study was a fully 
developed laminar straight duct flow. Figure 4 shows the analytically predicted 
profiles (from Shah & London 1978) compared to the velocity profiles that were 
measured at 5 hydraulic diameters upstream of the curved section inlet. Horizontal 
and vertical axial velocity profiles were measured at  the horizontal and vertical duct 
centrelines respectively. The measured data are in very good agreement with the 
analytical prediction, confirming that, for the range of Reynolds numbers 
investigated, the measured velocity profile had reached the fully developed state. 

In the numerical simulations of developing flow, the inlet profile was calculated 
using a simple approximation (from Shah & London 1978) for the analytical solution. 
The simple approximation predicts values that are higher than the analytical 
solution in the central region of the duct. The maximum non-dimensional velocity 
predicted by the analytical solution at  z’/a = z’/a = 0 is 2.096, while the simple 
approximation predicts a value of 2.116 at the same location. The difference is only 
1 %, so the simple approximation is a good estimate of the analytical solution. 

4.2. Flow development 

In  order to investigate the flow development, flow visualization and axial velocity 
measurements were performed at  three Dean numbers, Dn = 125, 137 and 150. 
Starting a t  an axial position of 20°, axial velocity profiles were measured every 20’ 
up to an axial position of 240’. Photographs were taken at each location to visualize 
the development of the secondary flows. Using the parabolized formulation of the 
three-dimensional Navier-Stokes equations, numerical simulations of the flow 
development corresponding to the measurements were performed. 

The development of axial velocity profiles with downstream position at Dn = 125, 
137 and 150 is shown in figure 5 (a-c). The outer wall of the duct is at  x’/a = 0.5. For 

12-2 
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each downstream position, the measured horizontal axial velocity profile at the 
horizontal duct centreline (i.e. z'/a = 0) is compared to the numerically predicted 
profile. Vertical axial velocity profiles, measured at  Dn = 150 and the vertical 
centreline of the duct (i.e. x'/a = 0) are compared to numerical predictions in figure 
5 (d ) .  The numerical prediction of secondary flow development for each Dean number 
is presented in figures 6 ( a )  7 (a )  and 8(a )  in the form of arrow plots showing the 
secondary velocity vectors. All secondary velocities have been normalized with the 
mean axial velocity to show the relative strength of the secondary flow with 
downstream position. The outer wall is on the right-hand side of each arrow plot, and 
the length of the mean axial velocity vector is equal to the length of the duct walls. 
Flow visualization of the development of the secondary flow patterns for each Dean 
number is shown in figures 6(b) ,  7 ( b )  and 8(b) .  Again the outer wall is on the right- 
hand side. 

4.2.1. Flow development at Dn = 125 
The development of the axial velocity profiles shown in figure 5 (a )  is similar to the 

observations of Austin & Seader (1974) for flow in a curved pipe, and Hille et al. 
(1985) for flow in a curved duct of square cross-section. The profiles exhibit the 
characteristic initial transfer of momentum to the outer wall, with a back-transfer of 
momentum as the secondary flow becomes developed. The overall agreement with 
the numerical predictions is good, indicating that the parabolic assumption is valid 
at  this Dean number. A slight increase in the axial velocity near the central region 
of the duct at  240" suggests that some exit effect might have been present. 

In the fully developed region, which occurred after an axial position of about loo", 
it can be seen that the measured velocities are slightly in error. The error appears to 
be systematic in nature, causing the measured values to be generally higher than the 
predictions. The magnitude of the velocity errors in the central region of the duct are 
between 2 O h  and 3 YO. Given that the uncertainty in vg was k 0.45 YO, the errors were 
obviously caused by positioning errors in the duct. The consistently lower values of 
the measurements near the outer wall are likely to be due to the tendency of the 
tracker processor to measure low in this region. 

As the flow initially developed, the fully developed straight duct inlet profile, with 
its velocity maximum at the duct centre, was quickly skewed toward the outer wall. 
This large transfer of axial momentum is seen at 20" in figure 5(a),  where the axial 
velocity maximum has been shifted toward the outer wall. This initial transfer of 
momentum is a result of the fluid in the straight duct flowing toward the outer wall 
of the curved section which is in line with the straight duct axis. Examining the 
secondary velocity arrow plot at  20" in figure 6 ( a ) ,  it can be seen that a strong 
secondary flow toward the outer wall is present, and a return flow at the top and 
bottom walls of the duct has been established. The return flow has been set up in 
response to favourable pressure gradient caused by the high-pressure region a t  the 
outer wall. The maximum flow velocity toward the outer wall is 16% of the mean, 
while the maximum velocity in the region returning fluid toward the inner wall is 
22.5% of the mean. 

A t  40" from the inlet, the peak in the axial velocity profile has decreased and 
started to move back toward the duct centre. In addition, the axial velocity near the 
inner wall has increased. This redistribution of axial momentum is a result of the 
secondary flow transporting the high-momentum fluid at  the outer wall to the inner 
wall. From the arrow plot at  40", it can be seen that the strength of the secondary 
flow toward the outer wall has decreased, as the initial linear momentum of the 
straight duct flow has been dissipated. The maximum secondary velocity directed 
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toward the outer wall on the duct centreline is 5.3 % of the mean, while the inward 
flow at the top and bottom walls has a maximum secondary velocity of 12.5 % of the 
mean. 

At 60" from the inlet, some further transfer of axial momentum from the outer wall 
toward the duct centre has occurred, filling in the central region of the profile. The 
maximum secondary velocities have not significantly changed from the values at 40", 
as is evident in the arrow plot at  60". At 80" there is a slight decrease in the axial 
momentum in the central region of the duct, but no more appreciable changes occur 
at 100". After 80" the secondary velocities settle down to maximum values of 6.2% 
and 12.9% of the mean in the outward and inward flows respectively. Judging from 
the axial velocity measurements and the arrow plots of the secondary flow, it can be 
concluded that after 100" the flow has become fully developed. 

Flow visualization in figure 6 ( b )  shows that symmetry about the horizontal duct 
centre-line was retained throughout the entire development process. Flow visuali- 
zation is useful in showing the boundaries of the cells, but no velocity information 
can be obtained. The cell boundaries are traced out by the dye as the secondary flow 
carries the fluid around the cross-section. Given the ratio of the mean axial velocity 
to the secondary velocities, a fluid particle will on average rotate once around the top 
or bottom half of the duct approximately every 70' to 80" of axial length. This effect 
is evident in the flow visualization at 20" and 40", since the dye has not yet completed 
one revolution in the cross-section. 

In  the studies of Austin & Seader (1974) and Humphrey et al. (1977), double peaks 
in the axial velocity profiles were observed in the development of axial velocity. This 
was not observed in this study because the curvature of the duct was not strong 
enough. In strongly curved ducts, more axial momentum is initially transferred 
toward the outer wall than in gently curved ducts, so the secondary flow will bring 
fluid with higher momentum to the inner wall. This causes the slow moving fluid a t  
the inner wall to be displaced toward the duct centre leaving high-momentum fluid 
at  the inner wall, thus creating the double peak. Maximum secondary velocities of 
23% of the mean in this study as compared to 65% of the mean in the study of 
Humphrey et al. (1977) shows the effect that stronger curvature has in increasing the 
strength of the secondary flow. 

4.2.2. Flow development at D n  = 137 

The initial development of the axial velocity profiles a t  Dn = 137, shown in figure 
5(b), is very similar to the developmental at D n  = 125. Up to 8 = 80' the axial 
velocity profiles for the two Dean numbers are almost identical. Flow visualization 
and arrow plots up to 8 = 80" are also very similar for the two cases. The numerical 
predictions of the secondary flows revealed that the maximum secondary velocities, 
on average, differed by about 0.5% in this initial development region. These 
observations show that the initial flow development at  D n  = 137 is to a two-vortex 
structure. 

After 8 = 80" the flow development at  Dn = 137 starts to differ from the 
development observed at Dn = 125. A t  Dn = 125 the axial velocity profile was fairly 
well established by 8 = SO", with no further changes observed with axial position. 
However, the axial velocity profile a t  Dn = 137 and 8 = 100" is starting to show a 
slight shift of the maximum axial velocity back toward the duct centre. Examining 
the flow visualization at  8 = 100" in figure 7 ( b ) ,  it  is seen that an additional pair of 
vortices are starting to form a t  the outer wall. In response to the additional vortices, 
the peak in the axial velocity profile is starting to shift back toward the duct centre. 
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The magnitudes of the secondary flows at the outer wall are very small, as is evident 
from the arrow plot. 

The flow visualization in figure 7 ( b )  shows that the additional vortices continue to 
grow with downstream distance and are still growing at  240", indicating that the flow 
has not reached a fully developed state. The numerical prediction of secondary 
velocities indicate that slightly over 300" of development length are required before 
the maximum radial velocities settle down to constant values. Once the secondary 
velocities have reached a constant value, the maximum radial velocity that occur on 
the horizontal duct centreline in the additional vortex pair is about 10 YO of the mean 
axial velocity. The maximum secondary velocity in the larger vortex pair is about 
11.5% of the mean. As for Dn = 125, this occurs near the top and bottom walls in 
the flow returning fluid to the inner wall. 

The response of the axial velocity profiles to the increasing size and strength of the 
additional vortex pair is an increasing shift of the maximum velocity back toward 
the duct centre. With the opposite sense of rotation as compared to the large 
vortices, the second vortex pair is able to transfer high-momentum fluid toward the 
duct centre and cause the velocity maximum to shift. Comparing the measured 
velocity profiles to the numerical simulations at 8 = 180°, 200' and 220", it can be 
seen that the numerical simulation predicts a faster growth rate of the additional 
vortices than observed. The larger vortex strength predicted by the simulation 
causes a larger shift in the maximum of the axial velocity. This is evident from the 
difference between the measurements and the numerical predictions near the outer 
wall. The difference at each location (i.e. 8 = 180°, 200' and 220) is larger than the 
2-3% positioning error, so it is clearly due to the different growth rates of the 
additional vortex pair. The faster growth rate of the additional vortices is also 
evident by comparing the arrow plots with the flow visualization. The reason why 
the simulation differs from the experiments is because the numerical formulation 
neglects elliptic effects in the axial direction and ignores gradients of the radial 
velocity in the axial direction. 

The flow visualization in figure 7 ( b )  shows that the additional vortices retained 
their symmetry about the horizontal centreline throughout the investigated 
development length, contrary to the asymmetric development that was observed by 
Hille et al. (1985). This difference might be due to the stronger curvature of their duct 
or possible physical asymmetries in their apparatus, given that the four-vortex 
solutions are unstable to asymmetric perturbations. However, the existence of their 
additional pair was first observed after 8 = 108', in qualitative agreement with the 
present study. 

4.2.3. Flow development at Dn = 150 
As seen in figure 5 ( c ) ,  the flow development up to 8 = 60" is essentially the same 

at Dn = 150 as i t  was for Dn = 137 and 125, as indicated by the axial velocity profiles, 
arrow plots and flow visualization. At 8 = 20°, the predicted maximum secondary 
velocity at the top and bottom walls was 24.8 YO of the mean, as compared to 23.7 YO 
and 22.5% for Dn = 137 and 125 respectively. The slight increase in the secondary 
flow velocity is a direct result of the increased centrifugal force at  the higher Dean 
numbers. It is not surprising that the initial flow development is similar, given that 
for each case the secondary flow is induced in response to the pressure gradient set 
up by the fluid moving toward the outer wall. At 8 = 80' the flow visualization in 
figure 8 ( b )  suggests that an additional pair of vortices is starting to form at the outer 
wall. Similar to the flow development a t  Dn = 137, the axial velocity profile at  
Dn = 150 and 8 = 80' is starting to show the back-transfer of momentum toward the 
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duct centre in response to the appearance of the additional vortices. The appearance 
of the additional vortices occurs at an earlier downstream position for Dn = 150 than 
for Dn = 137. From the flow visualization sequence, it is seen that the additional 
vortices continue to grow in the downstream direction, but at a faster rate than at 
Dn = 137. 

Comparing the horizontal axial velocity profiles a t  8 = 140" and 8 = 160" to the 
numerical simulation, it can be seen that the numerical simulation predicts a slightly 
faster growth rate of the additional vortices. This is evident by the larger shift in the 
axial velocity profiles toward the duct centre for the numerical simulations. As for 
Dn = 137, the observed difference is not due to experimental uncertainty in the 
measured velocities. 

Comparison of the arrow plots and flow visualization at 8 = 140" and 160" shows 
the larger vortices predicted by the numerical simulation. From 8 = 180" to 240°, the 
measured axial velocity profiles and flow visualization are in good agreement with 
the numerical simulation. Both measurements and numerical predictions indicate 
that by 8 = 240" the flow has reached a fully developed state. Once the secondary 
velocities have reached a constant value, the maximum radial velocity that occurs 
on the horizontal duct centreline in the additional vortex pair is about 11 YO of the 
mean axial velocity. This is slightly larger than the maximum value of 10% a t  
Dn = 137. For both D n  = 150 and 137, the maximum secondary velocity in the larger 
vortex pair is about 11.6% of the mean axial velocity. 

The measured vertical profiles of axial velocity in figure 5(d), and the flow 
visualization in figure 8 (b) reveal that the flow development was symmetric about 
the horizontal duct centreline. The measured vertical profiles are in good agreement 
with the numerical predictions. The large dip in the vertical axial velocity profile at 
6 = 40" is a result of the secondary flow redistributing the axial momentum in the 
initial development region. This dip in the vertical profile was also observed by 
Austin & Seader (1974) for developing flow in a curved pipe. The onset of the 
additional pair of vortices at Dn = 150 and 137 is consistent with the instability 
explanation given by Cheng et al. (1976), who believed that a centrifugal instability 
like the one that occurred in Dean's (19283) instability problem was responsible for 
the appearance of the additional vortices. Near the outer wall, where the axial 
velocity is decreasing with increasing distance from the centre of curvature of the 
duct, there is a centrifugally unstable region. If the axial velocity becomes large 
enough, viscous effects can no longer hold the two-vortex structure in place ; thus the 
additional vortices appear. 

The flow development at Dn = 150, 137 and 125 showed that the initial flow 
developments was to a two-vortex structure. At  Dn = 125, the centrifugal forces are 
not large enough to cause the formation of the additional vortices, so the two-vortex 
flow structure remains intact. However, at Dn = 137 viscous effects can no longer 
retain the two-vortex structure, so the additional pair of vortices starts to form. At 
Dn = 150 the centrifugal forces are event stronger, so the formation of the additional 
vortices starts earlier and their growth rate is faster. 

4.3. Development length 
The widely accepted definition of development length is the axial length required for 
the flow to reach an axially invariant (i.e. fully developed) state. In order to 
determine if this had been reached, the state of axial velocity at  x'la = 0.24 and 
z'/a = 0 was monitored with axial position. Compared to the axial velocities at other 
duct positions, that at x'/a = 0.24 and z'/a = 0 experienced the largest change when 
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FIQURE 9. Experimentally determined state diagrams (n), with axial velocity at z'/a = 0.24 and 
z'/a = 0 as the state variable, compared to the numerically predicted state diagrams (-) of flow 
development at D n  = 125, 137 and 150. 

going from a two-vortex to a four-vortex flow, so it was concluded that this location 
would be the most sensitive to changes in the flow in the axial direction. Comparing 
the axial velocity development to the radial velocity development at  %'/a = 0.24 and 
z'/a = 0 suggested that the axial velocity at  this location was an accurate indicator 
of the overall flow development. 

Experimentally determined state diagrams for the flow development at  Dn = 125, 
137 and 150 are compared to numerical predictions in figure 9. For Dn = 125, the 
measured flow development is in very good agreement with the numerical simulation. 
At Dn = 137, it is obvious that the flow has not yet reached a fully developed state. 
After 180', the state diagram clearly shows that the numerical simulation predicts 
a faster growth rate of the additional vortex pair. At Dn = 150, it is seen that by 
8 = 220' the flow has reached an axially invariant state, clearly illustrating the 
shorter development length a t  Dn = 150 as compared to Dn = 137. The axially 
invariant states predicted by the parabolized three-dimensional formulation were 
identical to those predicted by the two-dimensional formulation. 

For Dn = 137, the experimental data in figure 9 show a slower growth rate of the 
additional vortex pair than predicted by the numerical simulation. Similarly, the 
state diagram for Dn = 150 in figure 9 reveals the same effect at  120' < 8 < 160'; 
however, the difference between the measured and predicted values is not as large as 
it was for Dn = 137. The better agreement at a larger flow rate suggests that the 
contribution of the terms neglected in (2.6) to the growth rate of the additional 
vortex pair becomes less important. 

A numerically generated plot of the development length versus Dean number is 
presented in figure 10. For the two-vortex or two-cell flows the increase of 
development length with Dean number is linear, while for the four-vortex flows a 
decrease in development length with increasing Dean number is observed. A sharp 
increase in development length is seen for the four-vortex or four-cell flows as the 
Dean number approaches the critical value (i.e. limit point) for the transition from 
a two-cell to a four-cell flow. The development length appears to approach the 
critical value asymptotically, indicating an infinite development length at the 
critical value. This is consistent with the fact that smaller centrifugal forces require 
a longer axial length for the additional vortices to grow. The critical value predicted 
by the three-dimensional parabolic simulation has to be slightly less than Dn = 130, 
which was the smallest Dean number at which a four-cell flow was simulated. The 
critical value for the two-cell to four-cell transition, predicted by the two-dimensional 
simulation, was around Dn = 130.9. The flow visualization studies of Cheng, 
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Nakayama & Akiyama (1979) and Sugiyama et al. (1983) of the four-vortex flows in 
a square duct reveal different sizes of the additional vortex pair depending on Dean 
number. At  the lower Dean numbers the size of the additional vortex pair was 
smaller. It is important to note that the size of the additional vortex pair should be 
about the same a t  all Dean numbers when the flows are fully developed. The 
behaviour observed in Cheng et al. and Sugiyama et al. suggests that some of their 
flows were not fully developed as they had assumed. 

In  a numerical study of the flow development in a curved duct of square cross- 
section, Soh (1988) suggested that the flow developed into different states depending 
on the inlet profile to the curved section. For a fully developed straight duct inlet 
profile, the flow appeared to develop to a two-vortex-like state, while a free-vortex 
inlet profile developed into a four-vortex flow. In order to observe the effect that the 
inlet profile had on the flow development for the curvature ratio used in this study, 
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a numerical experiment was carried out using a fully developed straight duct inlet 
profile and uniform inlet profile. Since Agrawal, Talbot & Gong (1978) found that a 
uniform inlet profile quickly develops into a free vortex, the flow development for a 
uniform inlet should be very similar to the flow development for a free-vortex inlet. 

Figure 11 shows the flow development for a straight duct inlet profile compared to 
the flow development for a flat inlet profile. For each Dean number simulated, the 
flow develops to the same final state independent of the initial inlet profile. The four- 
vortex flows take longer to develop with a uniform inlet profile than with the fully 
developed straight duct inlet profile. The development to the same state is contrary 
to what Soh (1988) predicts, but this is easily rationalized as due to insufficient axial 
length used in his simulations. It is possible that for a larger axial length the same 
final states might have been observed. 

5. Investigation of two-dimensional multiple solutions 
For fluid flow in a curved duct of square cross-section, Winters (1987) numerically 

showed that the two-dimensional solution structure was a complex bifurcation 
diagram with areas of multiple symmetric and asymmetric solutions. A linear 
stability analysis by Winters also showed that all solutions, except the symmetric 
two-cell branches, were unstable to perturbations that broke the horizontal 
symmetry. Even though some of the solutions were also predicted to be unstable to 
symmetric perturbations, the symmetric four-cell flows were predicted to be stable 
for a perturbation that did not break the horizontal symmetry. 

Given that symmetric four-cell flows were predicted to be unstable to asymmetric 
perturbations, Winters questioned whether they could be experimentally observed. 
The results presented in $4.2.3 showed that it is possible to experimentally observe 
the predicted two-dimensional flow at Dn = 150. Even though the four-vortex flow 
is unstable to asymmetric perturbations, the growth rate of such perturbations must 
be small if it is possible to observe the flow pattern within the axial length of the 
apparatus used in this study. The ability to observe the symmetric four-cell flows can 
be attributed to a combination of an almost perturbation-free inlet profile and slow 
growth rates of the unstable modes for the four-cell flows. However, it is still in 
question as to what would happen if enough axial length of the curved section was 
present for perturbations to grow so their effect could be fully realized. 

Using the two-dimensional Navier-Stokes equations given in 32.2, the numerically 
predicted two-dimensional solution structure as a function of Dean number is shown 
in figure 12. The solution structure is in the form of a state diagram with the axial 
velocity at x'/a = 0.25 and z'/a = 0 as the state variable. The symmetry boundary 
condition imposed about the horizontal centreline only allowed symmetric solutions 
to be calculated. Between Dn = 100 and 150 it  is seen that the solution structure 
contains a dual solution region with limit points at  Dn x 114 and 131. Winters (1987) 
showed that the connection between the two-cell and four-cell branches is continuous, 
but the numerical formulation used in this study was not able to follow the solution 
around the limit points. 

It must be remembered that figure 12 has been calculated for a curved duct of 
square cross-section with a curvature ratio R, = 15.1. For other curvature ratios the 
solution structure will have the same appearance, but the location of the limit points 
will be different. Both Shanthini & Nandakumar (1986) and Winters (1987) have 
numerically shown that the Dn-values of the two limit points increase as the duct 
becomes more tightly coiled (i.e. as R, decreases). The two investigations have also 
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revealed that when the aspect ratio reaches a value of around 1.4 the two-cell and 
four-cell branches become disconnected, passing through a transcritical bifurcation. 

5.1. Experimental observation of dual solutions 
One of the goals of this study was to experimentally verify the numerically predicted 
two-dimensional solution structure. An obvious problem in accomplishing this can be 
seen from figure 10. The lack of sufficient axial development length in the 
experimental apparatus prevents observation of the naturally developing four-cell 
flows below D n  w 150. Given that the measurements in the experimental apparatus 
were only possible to about 240', an experimental 'trick' (i.e. pin inserted across the 
duct ; described in $5.3) was required to reduce the development length of the four- 
cell flows that were below Dn = 150. 

The experimentally observed two-dimensional solution structure at 8 = 220' is 
shown in figure 12(b). The two-cell branch was determined up to Dn = 130.5 by 
measuring the state variable with no pin inserted at  0 = 5'. As will be shown in $5.2, 
the two-cell to four-cell limit point at  D n  = 130.5 may or may not actually be a two- 
cell flow. The entire four-cell branch was observed upon the symmetric insertion of 
the pin. Starting with a two-cell flow at Dn w 125, the pin was inserted and adjusted 
until a symmetric four-cell flow was observed. Once a four-cell flow had been 
obtained, the flow rate was increased or decreased to trace the solution branch. Using 
the pin as an experimental trick to observe the four-cell solution branch is consistent 
with the work of Benjamin (1978a, b ) .  
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Figure 13 summarizes the role that the pin played in experimentally observing 
different regions of the two-dimensional solution structure. The two-cell flows in 
region A-B and the four-cell flows in region E-F could be observed with and without 
the pin inserted at the inlet. However, in region E-F the four-cell flows below 
D n  x 150 were not fully developed if no pin was used. The four-cell flows in region 
D-E could only be observed if the pin was used to induce the four-cell flows. 
Conversely, the two-cells flows in region B-C could only be observed without the pin 
inserted at the inlet. 
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FIGURE 15. Flow visualization of two-cell and four-cell flows at Dn = 123.4 compared to 
numerically predicted secondary flow streamlines. (a) Two-cell, (b) four-cell. 

In  figure 12(b), the Dean number for the jump from the four-cell branch back 
to the two-cell branch appears to  be close to the numerically predicted value of 
D n  = 114. For Dean numbers above about 118, the four-cell flows would remain, but 
at Dn = 115.1 (the lowest experimentally observed value) the four-cell flow was only 
observed briefly. As the flow rate was decreased below Dn x 118, the pin (located at  
8 = 5") was no longer effective in inducing the four-cell flow, so a two-cell flow 
developed. However, before the developing two-cell flow reached the downstream 
measurement position, it appeared that the four-cell structure being convected out 
of the duct had adjusted to the lower Dean number. Therefore, in order to observe 
the experimental point a t  Dn = 115.1, the flow rate was reduced and the lowest 
velocity value was recorded. Since the timescale for the flow to adjust to the lower 
flow rate was comparable to the convection timescale, the velocity value 
corresponding to the four-cell flow at Dn = 115.1 was only observed for a few 
seconds. 

Figure 14 shows the axial velocity profiles of a two-cell and four-cell flow measured 
at Dn = 125, 8 = 220" and z'/a = 0. Flow visualization of the secondary flow 
patterns a t  Dn = 123.4 are compared to the numerically predicted secondary flow 
streamlines for a two-cell and four-cell flow in figure 15. From figures 14 and 15 it can 
be seen that the experimentally observed dual solutions a t  Dn x 125 are in very good 
agreement with the numerical predictions. 

5.2. Determining two-cell to four-cell limit point 
Figure 16 shows the naturally occurring solution structure a t  8 = 220" if no inlet 

perturbation is used to induce the two-dimensional four-cell flows below D n  = 150. 
Figures 17 (a)  and 17 ( b )  show corresponding arrow plots and flow visualization of the 
secondary flow structure at 8 = 220". The experimental data in figure 16 were 
acquired by measuring the axial velocity at 8 = 220", x'/a = 0.24 and z'/a = 0 while 
the Dean number was varied. Unlike the numerically generated two-dimensional 
solution structure, no hysteresis effect was observed when the flow rate was reduced 
after having obtained a four-cell flow. 

From figure 16 it  can be seen that at around Dn = 130 the value of vo is starting 
to change in response to the onset of the additional vortex pair. Given that the 
development length of the four-cell flow is infinite a t  the critical value, it  is difficult 
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FIQURE 16. State diagram, with axial velocity at x’/a = 0.24 and z’/a = 0, as the state variable, 
showing the experimentally (0) and numerically (-) determined naturally occuring solution 
structure at 0 = 220’. 

to experimentally determine the two-cell to four-cell limit point. Flow visualization 
in figure 17 also indicates that the limit point is around Dn = 130, but it is impossible 
to determine a value with a high degree of accuracy. For instance, the flow 
visualization at  Dn = 129.9 might represent a four-vortex flow where the additional 
vortices have not yet started to grow. Based on the axial velocity measurements and 
flow visualization, a best estimate of the experimentally determined two-cell to four- 
cell limit point is Dn = 130 & 1-2 %. 

The numerical curve in figure 16 was generated by performing a developing flow 
simulation for each of a series of Dean numbers between 100 and 150. Once a 
developing flow simulation had been completed, the axial velocity at  0 = 220°, 
x‘/a = 0.24 and z’/u = 0 was extracted and used in the construction of the state 
diagram. The difference between the numerical prediction and measurements in the 
region between Dn = 133 and 145 is a result of the numerical simulation predicting 
a faster growth rate of the additional vortices. This effect can also be seen by 
comparing the arrow plots and flow visualization in figures 17(a) and 17(b)  
respectively. A feature that is common to the three-dimensional numerical simulation 
and the experimental measurements is the difficulty in determining the Dean number 
of the two-cell to four-cell limit point. 

5.3. Reduction of development length 
As seen in $5.1, the fully developed four-cell flows at  Dean numbers below about 150 
were observed by introducing a perturbation at 5 O  downstream from the curved 
section inlet. A 0.4 mm diameter pin was inserted across the duct on a radial line at  
the duct’s horizontal axis of symmetry ( z ’ / a  = 0). The appearance of the four-cell 
flows was very sensitive to the positioning of the pin. If the pin did not cause a 
symmetric perturbation, then the fully developed symmetric four-cell flows could not 
be observed. 

The size of the pin was kept small enough so that no undesirable effects were 
introduced from its wake. Assuming that the pin would see a maximum velocity 
equal to the value a t  the duct centre of the straight section inlet, the pin Reynolds 
number, Repin (based on the pin’s diameter) was 39 at Dn = 150. For Repin less than 
about 60, Schlichting (1979) states that the wake behind a circular cylinder will be 
laminar with no appearance of a KBrman vortex street. Since the pin was not 
subjected to a Dean number higher than Dn = 150, the wake behind the pin would 
always be free of a vortex street. 
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showing the reduction in development length at Dn = 137 for an experimental and numerical 
symmetric trip. Experimental: 0,  no trip; A, symmetric trip. Numerical: -, no trip; ......, 
symmetric trip. 
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FIGURE 19. Measured axial velocity profiles, at DR = 137, t9 = 60" (O), 140" (A), 220" (0) and 
%'/a = 0, with a symmetric trip at t9 = 5" compared to numerically calculated fully developed 
profile. 

The effect of a pin placed symmetrically across the duct at Dn = 137 can be seen 
in figure 18. The circles are the measured flow development with no pin and the 
triangles show the flow development for the symmetrically placed pin. With the pin, 
the flow appears to have already become axially invariant by about B = 40'. 
Measured velocity profiles at  D n  = 137 and B = 60°, 140' and 220" compared to the 
numerically calculated two-dimensional profile in figure 19, verify that the flow 
throughout most of the duct's axial length is axially invariant. 

The symmetric trip was numerically modelled by setting the axial and radial 
velocity components to zero at the grid points on the duct's horizontal axis of 
symmetry. This was done at B = 5' once a converged profile had already been 
obtained. The dotted line in figure 18 shows the numerically predicted flow 
development with a symmetric trip compared to the experimentally measured 
development with the symmetrically positioned pin (i.e. symmetric trip). The 
numerical simulation shows a reduced development length, but it nowhere near to 
what was measured. The difference is because the numerical trip (i.e. setting the 
velocities at -0.5 < x'/a < 0.5 and z'/a = 0 to zero) is not an accurate model of the 
pin's effect. 



366 B. Bara, K .  Nandakumar and J .  H .  Masliyah 

FIGURE 20. Three-dimensional axial velocity plot of fully developed (a) two-cell and ( b )  four-cell 
flows at Dn = 123.4. 

5 
US 

FIGURE 21. Measured axial velocity profile at Dn = 125, 8 = 20" and x'la = 0.32 with (A) and 
without (0) a symmetric pin at 8 = 5". 

5.4. Role of the pin in inducing four-vortex flows 
The role of the pin in inducing the four-cell flows can be explained with the aid of the 
three-dimensional plots of axial velocity in figure 20. The two-cell and four-cell axial 
velacity surfaces were numerically calculated using the two-dimensional vor- 
ticity-stream-function formulation of 92.2. The major difference between the two- 
cell and four-cell velocity surfaces is the depression at  the horizontal line of 
symmetry in the four-cell one. The velocity gradients near the outer wall in the four- 
cell profile are necessary if the additional pair of vortices is to exist. In fact, the 
vorticity transport equation (2.14) reveals that it is the gradients of the axial velocity 
in the vertical direction that drive the secondary flow. 

Figure 21 shows the measured axial velocity profiles in the vertical direction a t  
Dn = 125, B = 20' and x'la = 0.32 with and without the pin. Without the pin the 
profile is fairly uniform in the central region. However, upon the insertion of the 
symmetrically placed pin, the profile develops a depression. The vertical axial 
velocity gradients induced by the pin's presence cause the additional vortices to form 
at the outer wall. Given that the pin's role is to create the proper velocity gradients, 
its axial position should not be critical. 

6. Response of flow to asymmetric perturbations 
The numerical studies of Winters (1987) and Yanase et al. (1988) demonstrated 

that the fully developed four-cell flows in curved ducts of both rectangular and 
circular cross-section are unstable to asymmetric perturbations. In  each case the 
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FIGURE 22. Numerically calculated state diagrams, with axial velocity at x ' /a  = 0.24 and 
z'/a = 0 as the state variable, showing flow development to B = 2000" at Dn = 125, 130, 137, 150, 
200 and 250. 

four-cell flows were found to be stable for a symmetric disturbance, while the two- 
cell flows were found to be stable for any arbitrary disturbance. The use of a 
symmetric pin to experimentally induce the fully developed four-cell flows, as was 
shown in 35.3, is consistent with Winter's prediction that such flows are stable to 
symmetric disturbances. 

In 35.1 it  was shown that for Dn < 150, the symmetric four-cell flows predicted by 
the two-dimensional Navier-Stokes equations could be experimentally observed 
within 240" of axial length. Given that fully developed four-cell flows are unstable to 
asymmetric perturbations, and that any experimental apparatus will have inherent 
asymmetries, suggests that the growth rate of such disturbances must be small in 
order to experimentally observe the flows. If an asymmetric disturbance is not 
introduced at the inlet, naturally occurring asymmetries might require large axial 
lengths before their effects are observed. However, whether an asymmetric 
disturbance of significant magnitude is deliberately introduced at the inlet or allowed 
to grow naturally, the question still remains as to what happens to the flow under the 
influence of asymmetric perturbations. 

For the range of Dean numbers investigated in the curved duct, the inlet flows 
were steady. However, one possible way that the four-cell flows could respond to 
growing asymmetric perturbations is to develop time-dependent fluctuations. In 
order to check the steadiness of the flows that were investigated, a point at 0 = 240" 
was chosen, and the axial velocity was monitored for at least 80 minutes. The 
velocity was monitored on the horizontal line of symmetry (i.e. z'/a = 0) and at one 
quarter of the duct width from the outer wall (i.e. x'/a = 0.25). For the four-cell 
flows, this position was between the additional vortex pair at the outer wall, so any 
motion in the vortices should easily be detected. None of the flows measured in the 
curved duct showed any time dependence. 

6.1. Numerical investigation of flow behaviour at large axial distances 
In  the experimental apparatus used in this study, measurement of the flow 

development was limited to an axial length of around 240". This amount of axial 
length was not sufficient to determine the ultimate state of the four-cell flows under 
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FIQURE 23. Arrow plots of spatial oscillations at Dn = 150 showing the development of the 

secondary flow between 0 = 720' and 1200". 

the influence of any asymmetric perturbations. Therefore, in order to conjecture 
what might happen, a numerical investigation of the flow development to large axial 
lengths was performed. In the numerical simulations asymmetric perturbations arise 
naturally due to round-off errors. Figure 22 shows state diagrams of the numerically 
simulated flow development a t  Dn = 125, 130, 137, 150, 200 and 250. 

It is seen that at  Dn = 125 the flow remains axially invariant after 8 100". It is 
not surprising that the two-cell flow remains axially invariant, since it is supposedly 
stable to any arbitrary perturbation. In contrast, the four-cell flows at Dn = 130, 
137,150 and 200 eventually develop a spatial oscillations in the streamwise direction. 
The frequency of these oscillations increased as the Dean number was increased. As 
shown by Sankar et al. (1988), these oscillations are not a numerical artifact. They 
repeated some calculations with different axial step sizes and cross-plane grid 
resolution and found that the nature of the oscillations and periods were sustained. 

The oscillations in the axial velocity are a result of oscillations in the additional 
pair of vortices at the outer wall. Figure 23 shows arrow plots of the secondary flow 
corresponding to the state diagram of axial velocity a t  Dn = 150 shown in figure 22. 
The arrow plot at  8 = 720" reveals a growing asymmetry in the additional vortex 
pair as the vortices move downward in the cross-section. The top cell appears to 
increase in size slightly while the bottom cell is compressed into the corner. 
The increase in axial velocity between 8 = 600" and 780", in the state diagram at 
Dn = 150, reflects the growing asymmetry of the additional vortex pair. 

In the region from 8 = 800' to 860", the additional vortex pair disappears into the 
bottom vortex of the larger pair. By 8 = 920' the larger vortex pair has readjusted 
to what appears to be a symmetric two-cell flow. The axial velocity at  0 = 920°, as 
seen in the state diagram at Dn = 150, has a value that is typical of a two-cell flow. 
After 8 = 920°, the additional vortex pair reappears and continues to grow in size 
until 8 = 1080", where a small vertical velocity in the upward direction is evident in 
the secondary velocity vectors on the horizontal line of symmetry near the outer 
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wall. Following the flow development to B = 1200", it  is seen that the asymmetry in 
the additional vortex pair grows as before, but the movement of the cells is now 
toward the top of the duct. The alternating movement of the additional vortices from 
top to bottom results in a period that is twice as long as the period for axial velocity 
shown in figure 22, and is a consequence of the symmetries in the governing 
equations. If the axial velocities in figure 22 had been monitored off the horizontal 
line of symmetry then they would have shown the longer period of oscillation. 

The oscillation of the flow between a two-cell and four-cell state is consistent with 
Winter's prediction that there is no stable two-dimensional flow in the region 
immediately beyond the limit point of the two-cell to four-cell transition. Once the 
limit point is exceeded and a four-cell flow develops, numerical round-off introduces 
asymmetries which cause the additional vortex pair at  the outer wall to experience 
a spatial oscillation in the streamwise direction. Sankar et al. (1988) found that their 
four-cell flows at D n  = 200, for curvature ratios R, = 4 and 10, remained axially 
invariant up to B = 2500". However, after rerunning their simulations for larger axial 
lengths, i t  was found that sustained oscillations appeared. 

In  the state diagram of figure 22, the numerical simulation shows that a t  Dn = 250 
the flow appears to eventually develop into an axially invariant two-cell state. The 
numerical study of Winters (1987) revealed that an isolated two-cell branch exists at 
this higher Dean number, so it is possible that the flow has been attracted to this 
state. Winters also predicted that the isolated two-cell branch was stable to any 
arbitrary perturbation. The breakdown of the four-cell flow to what appears to be an 
axially invariant two-cell state at  D n  = 250 is consistent with the solution structure 
and stability characteristics predicted by Winters. 

The above phenomena of a four-cell flow giving way to a stable two-cell flow also 
happens in the dual solution region between D n  w 114 and 130. Figure 24 shows the 
numerical prediction of flow development at  D n  = 110, 125 and 137 with a four-cell 
flow inlet profile. The inlet profile used was the axially invariant four-cell profile 
calculated in the flow development simulation at  Dn = 150. At Dn = 110, the two- 
cell flow is the unique solution to the two-dimensional equations, so the flow quickly 
evolves to the two-cell state. After an initial adjustment region, the four-cell flow a t  
Dn = 125 is axially invariant for about 500' before giving way to a two-cell flow. The 
use of a four-cell flow as the inlet profile was the only way that the dual solutions 
could be observed with the three-dimensional numerical formulation. The familiar 
spatial oscillation is again seen at Dn = 137, once the limit point (i.e. point C of figure 
13) of the two-cell to four-cell transition is exceeded. 

The numerical investigation of flow development is consistent with the prediction 
that fully developed four-cell flows are unstable to asymmetric perturbations. In  the 
regions of dual solutions, i t  was seen that the four-cell flow would give way to a stable 
two-cell flow. For Dean numbers where no stable two-dimensional solutions exist, 
the flows might develop spatial oscillations or time dependence, or even some 
combination of the two. In  the numerical study of Finlay, Keller & Ferziger (1988) 
for flow in a curved channel of infinite span, they found that travelling waves 
developed in the streamwise direction at  higher Reynolds numbers. Their observation 
suggests that the same type of phenomena might be possible in a curved duct of finite 
aspect ratio. It must be kept in mind that the three-dimensional numerical 
formulation used in this study does not model time dependence, so the instabilities 
in the four-cell flows were forced to show up as spatial oscillations. 
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FIGURE 24. Numerically calculated state diagram, with axial velocity at x'/a = 0.24 and z'/a = 0 
as the state variable, showing flow development to 8 = 2500' at Dn = 110, 125 and 137 with a 
developed four-cell flow as the inlet condition. 
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FIGURE 25. Numerically calculated state diagram, with axial velocity at Dn = 150, x'/a = 0.24 and 
z' /a=O as the state variable, showing flow development with (----) and without (-) an 
asymmetric perturbation at B = 5'. 

6.2. Experimental evidence of streamwise spatial oscillations 
The numerical investigation of $6.1 showed that, given enough axial length, 
asymmetries will develop and cause streamwise spatial oscillations. However, there 
is still some doubt as to whether the flow will behave like that in the real situation. 
In  order to study this, asymmetric perturbations were deliberately introduced at  the 
inlet of the experimental apparatus in the hope of observing some far downstream 
behaviour within the axial length of the apparatus. 

In  order to gain some insight into the effect of an asymmetric perturbation at the 
inlet, a numerical simulation was performed. Figure 25 shows a state diagram of the 
flow development at D n  = 150 for an asymmetric perturbation at 8 = 5'. The 
asymmetric perturbation was accomplished by setting the axial and radial velocities 
at z'la = 0.034 to zero. This was done at  all grid points across the width of the duct 
(i.e. -0.5 < x ' /a  < 0.5). The simulation reveals that an asymmetric perturbation at  
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FIQURE 26. Flow visualization of secondary flow patterns at Dn = 133.9 and 8 = 220' showing the 
effect of different perturbations at 8 = 5". 
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FIQURE 27. Vertical profiles of axial velocity measured at Dn = 133.9, 8 = 20' and x'la = 0.32 
showing the degree of asymmetry in the axial velocity profile for different perturbations: 0,  
symmetric; A, asymmetric 1 ;  0,  asymmetric 3. 

- 

the inlet results in the earlier appearance of the sustained spatial oscillations. It is 
easy to imagine that for different degrees of asymmetry in the inlet perturbation, the 
axial position of the spatial oscillations would correspondingly shift. Therefore, the 
spatial oscillation could be observed at one axial location by shifting the axial 
position of the oscillation with different asymmetric perturbations. 

Varying degrees of asymmetry were introduced in the experimental apparatus by 
rotating the pin. Small rotations of the pin, resulting in small vertical movements, 
broke the symmetry of the flow about the horizontal centreline (i.e. z'/a = 0). In 
figure 26, flow visualization of the secondary flow patterns at  D n =  133.9 and 
8 = 22O"show the patterns for various perturbations a t  0 = 5". As expected, with no 
perturbation at 8 = 5 O ,  a developing four-cell flow is observed at  8 = 220". Also, a 
symmetric perturbation at 0 = 5" resulted in a developed four-cell flow a t  8 = 220". 
The three asymmetric perturbations, identified as 1 ,  2 and 3, have an increasing 
degree of asymmetry associated with them. This can be seen from the vertical profiles 
of axial velocity at 8 = 20" presented in figure 27. The small difference between the 
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axial velocity profiles of the symmetric perturbation and asymmetric perturbation 
1, reveals the sensitivity of the secondary flow pattern observed at 8 = 220" to the 
position of the pin. 

Figure 26 shows that the three asymmetric perturbations cause an increasing 
asymmetry of the additional vortex pair a t  8 = 220" until they finally disappear into 
the top vortex. The progression actually happens in space. However, by manipulation 
of the pin at 8 = 5" the progression can be observed at  one axial location. Using a 
portable laser light sheet (based on Koga, Abrahamson & Eaton 1987), the increasing 
asymmetry in the additional vortex pair and its subsequent disappearance into the 
larger vortex, as shown in figure 26, was observed within an axial length of about 40". 
This is in very good agreement with the behaviour shown by the three arrow plots 
at 8 = 800" to 840" in figure 23. The secondary flow structures at  6' = 220°, caused by 
the asymmetric perturbations, did not display any time dependence. This confirms 
that within the axial length of the experimental apparatus, there exists a streamwise 
spatial variation that resembles the numerically predicted spatial oscillation. 

For the conditions of an asymmetric trip a t  8 = 5", figure 28 shows a comparison 
between the experimentally measured state diagram of flow development at 
Dn = 137 and the corresponding numerical prediction. The top graph shows that the 
asymmetric perturbation in the numerical simulation does not model the asymmetric 
perturbation caused by the pin in the experiment. The same inability to model the 
pin was observed for the case of the symmetric pin in figure 18. However, by shifting 
the numerically predicted curve 225" to the left as shown in the bottom graph of 
figure 28, the numerical prediction agrees quite well with the measured data. The fact 
that part of st streamwise spatial oscillation is observable in the experimental 
apparatus suggests that sustained streamwise spatial oscillations may not be merely 
an artifact of the steady, parabolized formulation. 

7. Conclusions 
Axial velocity profiles of flow development were measured every 20" up to an axial 

length of 8 = 240" at Dn = 125, 137 and 150 for a square duct of curvature ratio, 
R, = 15.1. As expected, the flow a t  Dn = 125 developed into a symmetric two-vortex 
flow. Measurement of vertical velocity profiles and flow visualization confirmed the 
symmetry of the flow. A t  Dn= 150, the flow developed into a fully developed 
symmetric four-vortex state. Flow visualization and measured vertical velocity 
profiles verified that the flow was symmetric. The axial velocity measurements and 
flow visualization at  Dn = 137 revealed that by 0 = 240" the flow had not yet 
reached a fully developed state. Numerical simulations of the flow development at 
Dn = 125, 137 and 150, using a steady three-dimensional parabolized formulation of 
the Navier-Stokes equations, were in good agreement with measured axial velocities. 
Measurement of a developing four-vortex flow to its fully developed state (i.e. at 
Dn = 150) was accomplished for the first time in this study. Also, the discovery of the 
decrease of the development length with increasing Dean number for the four-vortex 
flows has not been previously reported. 

Given that the development length of the four-cell flows decreased with increasing 
Dean number, a numerical investigation for Dean numbers below Dn = 175 was 
performed to reveal more detail. A t  the limit point of the two-cell to four-cell 
transition the development length appeared to be infinite, while at Dn = 175 the 
development length was calculated to be about 165". The faster development of the 
additional vortices for a larger centrifugal force (i.e. larger Dn), is consistent with the 
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0 

FIGUFLE 28. Measured state diagram (A), with axial velocity at Dn = 137, x'/a = 0.24 and 
%'/a = 0 88 the state variable, compared to the numerically calculated state diagram with an 
asymmetric perturbation at 6 = 5' (----). In ( b )  the numerical curve has been shifted 225' to the 
left in order to line up with the measured data. 

suggestion of Cheng et al. (1976) that the formation of the additional vortex pair is 
due to a centrifugal instability. 

Using a symmetrically positioned pin at  8 = 5" to induce the four-cell flows, it was 
shown for the first time that the predicted symmetric two-dimensional solution 
structure for D n  < 150 could be experimentally observed. The pin reduced the 
development length of the four-cell flows, allowing the two-dimensional solutions to 
be observed within the 240' axial length of the experimental apparatus. The 
experimentally determined limit points of the two-cell to four-cell transition and the 
four-cell to two-cell transition were in good agreement with the numerically 
predicted values of D n  z 131 and 114 respectively. Axial velocity profiles and flow 
visualization were taken of a dual solution at  D n  = 123.4. 

Winters (1987) numerical prediction that fully developed four-cell flows are stable 
to symmetric perturbations, but unstable to asymmetric perturbations, was found to 
be consistent with the present experimental observations. A symmetrically 
positioned pin was able to induce a fully developed symmetric four-cell flow. 
Numerical simulations revealed that under the influence of asymmetric per- 
turbations, four-cell flows develop sustained streamwise spatial oscillations in those 
regions where there are no stable two-dimensional solutions. In  the dual solution 
region, the numerical simulations showed that the four-cell flow would give way to 
a stable two-cell flow. An experimental investigation showed the existence of a time- 
independent spatial variation resembling the initial part of a numerically predicted 
streamwise spatial oscillation. The spatial variation was observed within the axial 
length of the apparatus by deliberately inserting asymmetric perturbations at  
e = 50. 

Given that the fully developed four-cell flows are unstable to asymmetric 
perturbations, the question as to what happens to the flows farther downstream still 
exists. The parabolized steady three-dimensional equations used for the numerical 
simulations were restricted to show instabilities in space, so they could not predict 
any time-dependent motions. Even though no time dependence was observed in the 
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flows measured within the axial length of the experimental apparatus, it is possible 
that the unstable four-cell flows might develop time dependence farther downstream. 
It would be expected that the growth rate of the asymmetric disturbances would 
increase with increasing Dean number. Therefore, experiments a t  higher Dean 
numbers might show time dependence within the axial length of the present 
apparatus. I n  order to numerically determine time-dependent behaviour, a numerical 
formulation would be required that retained the time-dependant terms. 
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